Introduction to Time Series Analysis - 03
This note is for course MATH 545 at McGill University.
Lecture 7 - Lecture 9
Test for weak stationarity
sample autocorrelation (for white noise only)
problem: so many h h h 's
portmanteau test
Q = ∑ j = 1 h ρ ^ 2 ( j ) Q = \sum^h_{j=1}\hat{\rho}^2(j) Q = ∑ j = 1 h ρ ^ 2 ( j )
If y t ∼ iid N ( 0 , σ 2 ) y_{t} \stackrel{\text { iid }}{\sim} N(0, \sigma^{2}) y t ∼ iid N ( 0 , σ 2 ) , then Q ∼ χ h 2 Q \sim \chi^2_h Q ∼ χ h 2
Q L B = n ( n + 2 ) ∑ j = 1 h ρ ^ 2 ( j ) n − j Q_{LB}=n(n+2)\sum^h_{j=1}\frac{\hat{\rho}^2(j)}{n-j} Q L B = n ( n + 2 ) ∑ j = 1 h n − j ρ ^ 2 ( j )
Turing points test
y i y_i y i is a turing point if y i < y i − 1 , y i < y i + 1 y_i < y_{i-1}, y_i<y_{i+1} y i < y i − 1 , y i < y i + 1 or y i > y i − 1 , y i > y i + 1 y_i > y_{i-1}, y_i>y_{i+1} y i > y i − 1 , y i > y i + 1
Let y i y_i y i be a turing point. For iid sequences, let T T T be the size of turing points.
What’s the probability of turing point after t t t ? ANS: 2/3
So E ( T ) = ( n − 2 ) 2 3 E(T)=(n-2)\frac{2}{3} E ( T ) = ( n − 2 ) 3 2 , ν ( T ) = 16 n − 29 90 \nu(T)=\frac{16n-29}{90} ν ( T ) = 9 0 1 6 n − 2 9
T − E ( T ) ν ( T ) ∼ N ( 0 , 1 ) \frac{T-E(T)}{\sqrt{\nu(T)}} \sim N(0, 1) ν ( T ) T − E ( T ) ∼ N ( 0 , 1 ) for large n n n
sign test: count y i + 1 − y i > 0 y_{i+1} - y_i >0 y i + 1 − y i > 0
Exact signal hypothesis test for H 0 : p = 0.5 H_0: p=0.5 H 0 : p = 0 . 5
Rank tests (compare ranks of y t y_t y t with t t t )
(Note: there may be 20 minutes note that I did not take)
Prediction: m ( X n ) = E ( X n + h ∣ X n ) m(X_n)=E(X_{n+h}|X_n) m ( X n ) = E ( X n + h ∣ X n )
Show that E ( X n + h ∣ X n ) E(X_{n+h}|X_n) E ( X n + h ∣ X n ) is the unique minimizer of E [ ( X n + h − m ( X n ) ) 2 ] E[(X_{n+h}-m(X_n))^2] E [ ( X n + h − m ( X n ) ) 2 ] .
Assume m ^ ( X n ) \hat{m}(X_n) m ^ ( X n ) minimizes E [ ( X n + h − m ( X n ) ) 2 ] E[(X_{n+h}-m(X_n))^2] E [ ( X n + h − m ( X n ) ) 2 ] , then E [ ( X n + h − m ^ ( X n ) ) 2 ] E[(X_{n+h}-\hat{m}(X_n))^2] E [ ( X n + h − m ^ ( X n ) ) 2 ] is the minimum value of MSE.
E [ ( X n + h − m ^ ( X n ) ) 2 ] = E [ ( X n + 1 − E ( X n + h ∣ X n ) + E ( X n + h ∣ X n ) − m ^ ( X n ) ) 2 ] = E [ ( X n + h − E ( X n + h ∣ X n ) ) 2 ] + 2 E [ ( X n + h − E ( X n + h ∣ X n ) ) ( E ( X n + h ∣ X n ) − m ^ ( X n ) ) ] + E [ E ( X n + h ∣ X n ) − m ^ ( X n ) ) 2 ] E[(X_{n+h}-\hat{m}(X_n))^2]\\=E\left[\left(X_{n+1}-E\left(X_{n+h} | X_{n}\right)+E\left(X_{n+h} | X_{n}\right)-\hat{m}\left(X_{n}\right)\right)^{2}\right]\\=\left.E\left[\left(X_{n+h}-E\left(X_{n+h} | X_{n}\right)\right)^{2}\right]+2 E\left[\left(X_{n+h}-E\left(X_{n+h}\right| X_{n}\right)\right)\left(E\left(X_{n+h} | X_{n}\right)-\hat{m}\left(X_{n}\right)\right)\right]+\left.E\left[E\left(X_{n+h} | X_{n}\right)-\hat{m}\left(X_{n}\right)\right)^{2}\right] E [ ( X n + h − m ^ ( X n ) ) 2 ] = E [ ( X n + 1 − E ( X n + h ∣ X n ) + E ( X n + h ∣ X n ) − m ^ ( X n ) ) 2 ] = E [ ( X n + h − E ( X n + h ∣ X n ) ) 2 ] + 2 E [ ( X n + h − E ( X n + h ∣ X n ) ) ( E ( X n + h ∣ X n ) − m ^ ( X n ) ) ] + E [ E ( X n + h ∣ X n ) − m ^ ( X n ) ) 2 ]
Focus on the second term:
2 E [ ( X n + h − E ( X n + h ∣ X n ) ) ( E ( X n + h ∣ X n ) − m ^ ( X n ) ) ] = 2 E X n E X n + h ∣ X n [ ( X n + h − E ( X n + h ∣ X n ) ) ( E ( X n + h ∣ X n ) − m ^ ( X n ) ) ∣ X n ] = 2 E x n [ ( E ( X n + h ∣ X n ) − m ( X n ) ) ] E X n + h ∣ X n [ ( X n + h − E ( X n + h ∣ X n ) ) ] = 0 2E[(X_{n+h}-E(X_{n+h}| X_{n}))(E(X_{n+h} | X_{n})-\hat{m}(X_{n}))]\\=2 E_{X_{n}} E_{X_{n+h} | X_{n}}\left[\left(X_{n+h}-E\left(X_{n+h} | X_{n}\right)\right)\left(E\left(X_{n+h} | X_{n}\right)-\hat{m}\left(X_{n}\right)\right) | X_{n}\right]\\=2 E_{x_{n}}\left[\left(E\left(X_{n+h} | X_{n}\right)-m\left(X_{n}\right)\right)\right] E_{X_{n+h} | X_{n}}\left[\left(X_{n+h}-E\left(X_{n+h} | X_{n}\right)\right)\right]\\=0 2 E [ ( X n + h − E ( X n + h ∣ X n ) ) ( E ( X n + h ∣ X n ) − m ^ ( X n ) ) ] = 2 E X n E X n + h ∣ X n [ ( X n + h − E ( X n + h ∣ X n ) ) ( E ( X n + h ∣ X n ) − m ^ ( X n ) ) ∣ X n ] = 2 E x n [ ( E ( X n + h ∣ X n ) − m ( X n ) ) ] E X n + h ∣ X n [ ( X n + h − E ( X n + h ∣ X n ) ) ] = 0
So E [ ( X n + h − m ^ ( X n ) ) 2 ] = E [ ( X n + h − E ( X n + h ∣ X n ) ) 2 ] + E [ E ( X n + h ∣ X n ) − m ^ ( X n ) ) 2 ] E[(X_{n+h}-\hat{m}(X_n))^2]=\left.E\left[\left(X_{n+h}-E\left(X_{n+h} | X_{n}\right)\right)^{2}\right]+E[E\left(X_{n+h} | X_{n}\right)-\hat{m}\left(X_{n}\right)\right)^{2}] E [ ( X n + h − m ^ ( X n ) ) 2 ] = E [ ( X n + h − E ( X n + h ∣ X n ) ) 2 ] + E [ E ( X n + h ∣ X n ) − m ^ ( X n ) ) 2 ]
and this equation is greater than 0 unless E ( X n + h ∣ X n ) = m ^ ( X n ) E\left(X_{n+h} | X_{n}\right)=\hat{m}\left(X_{n}\right) E ( X n + h ∣ X n ) = m ^ ( X n ) and then this equation equal to 0.
But this obviously extends to conditioning on ( X 1 , X 2 , . . . , X n ) (X_1, X_2, ..., X_n) ( X 1 , X 2 , . . . , X n )
Choose a model for E ( X n + h ∣ X n ) E(X_{n+h}|X_n) E ( X n + h ∣ X n ) and we always start from linear
What is the best linear predictor for X n + h X_{n+h} X n + h that is a function of X n X_n X n ?
E [ ( X n + h − ( a + b X n ) ) 2 ] = E ( X n + h 2 ) − 2 E [ X n + h ( a + b X n ) ] + E [ ( a + b X n ) 2 ] = E ( X n + 1 2 ) − 2 ( a E ( X n + h ) + b E ( X n + h X n ) ) + a 2 + 2 a b E ( X n ) + b 2 E ( X n 2 ) \begin{array}{l}{\quad E\left[\left(X_{n+h}-\left(a+b X_{n}\right)\right)^{2}\right]} \\ {=E\left(X_{n+h}^{2}\right)-2 E\left[X_{n+h}\left(a+b X_{n}\right)\right]+E\left[\left(a+b X_{n}\right)^{2}\right]} \\ {=E\left(X_{n+1}^{2}\right)-2\left(a E\left(X_{n+h}\right)+b E\left(X_{n+h} X_{n}\right)\right)+a^{2}+2 ab E\left(X_{n}\right)+b^{2} E\left(X_{n}^{2}\right)}\end{array} E [ ( X n + h − ( a + b X n ) ) 2 ] = E ( X n + h 2 ) − 2 E [ X n + h ( a + b X n ) ] + E [ ( a + b X n ) 2 ] = E ( X n + 1 2 ) − 2 ( a E ( X n + h ) + b E ( X n + h X n ) ) + a 2 + 2 a b E ( X n ) + b 2 E ( X n 2 )
We take the derivative
∂ ∂ a = − 2 E ( X n + h ) + 2 a + 2 b E ( X n ) \frac{\partial}{\partial a}=-2 E\left(X_{n+h}\right)+2 a+2 b E\left(X_{n}\right) ∂ a ∂ = − 2 E ( X n + h ) + 2 a + 2 b E ( X n )
∂ ∂ b = − 2 E ( X n + h X n ) + 2 a E ( X n ) + 2 b E ( X n 2 ) \frac{\partial}{\partial b}=-2 E\left(X_{n+h} X_{n}\right)+2 a E\left(X_{n}\right)+2 b E\left(X_{n}^{2}\right) ∂ b ∂ = − 2 E ( X n + h X n ) + 2 a E ( X n ) + 2 b E ( X n 2 )
Set two derivatives equal to 0, we have
a ^ = E ( X n + h ) − b ^ E ( X n ) = μ ( n + h ) − b ^ μ ( n ) \hat{a}=E\left(X_{n+h}\right)-\hat{b} E\left(X_{n}\right)=\mu(n+h)-\hat{b}\mu(n) a ^ = E ( X n + h ) − b ^ E ( X n ) = μ ( n + h ) − b ^ μ ( n )
Adding the equation above to this equation: − E ( X n + h X n ) + a ^ E ( X n ) + b ^ E ( X n 2 ) = 0 -E\left(X_{n+h} X_{n}\right)+\hat{a} E\left(X_{n}\right)+\hat{b} E\left(X_{n}^{2}\right)=0 − E ( X n + h X n ) + a ^ E ( X n ) + b ^ E ( X n 2 ) = 0
We have:
− E ( X n + n X n ) + ( μ ( n + h ) − b ^ μ ( n ) ) E ( X n ) + b ^ E ( X n 2 ) = 0 -E\left(X_{n+n} X_{n}\right)+(\mu(n+h)-\hat{b} \mu(n)) E\left(X_{n}\right)+\hat{b} E\left(X_{n}^{2}\right)=0 − E ( X n + n X n ) + ( μ ( n + h ) − b ^ μ ( n ) ) E ( X n ) + b ^ E ( X n 2 ) = 0
and thus b ^ = E ( X n + h X n ) − μ ( n + h ) μ ( n ) E ( X n 2 ) − ( μ ( n ) ) 2 = Cov ( X n + h , X n ) Var ( X n ) \hat{b}=\frac{E\left(X_{n+h} X_{n}\right)-\mu(n+h) \mu(n)}{E\left(X_{n}^{2}\right)-(\mu(n))^{2}}=\frac{\operatorname{Cov}\left(X_{n+h}, X_{n}\right)}{\operatorname{Var}\left(X_{n}\right)} b ^ = E ( X n 2 ) − ( μ ( n ) ) 2 E ( X n + h X n ) − μ ( n + h ) μ ( n ) = V a r ( X n ) C o v ( X n + h , X n )
So a ^ = μ ( n + h ) − cov ( X n + h , X n ) Var ( X n ) μ ( n ) \hat{a}=\mu(n+h)-\frac{\operatorname{cov}\left(X_{n+h}, X_{n}\right)}{\operatorname{Var}\left(X_{n}\right)} \mu(n) a ^ = μ ( n + h ) − V a r ( X n ) c o v ( X n + h , X n ) μ ( n )
and X ^ n + h = a ^ + b ^ X n = μ ( n + h ) + Cov ( X n + h , X n ) Var ( X n ) ( X n − μ ( n ) ) \hat{X}_{n+h}=\hat{a}+\hat{b} X_{n}=\mu(n+h)+\frac{\operatorname{Cov}\left(X_{n+h}, X_{n}\right)}{\operatorname{Var}\left(X_{n}\right)}\left(X_{n}-\mu(n)\right) X ^ n + h = a ^ + b ^ X n = μ ( n + h ) + V a r ( X n ) C o v ( X n + h , X n ) ( X n − μ ( n ) )
If { X t } \{X_t\} { X t } is stationary, then X ^ n + h = μ + γ ( h ) γ ( 0 ) ( X n − μ ) = ρ ( h ) X n + ( 1 − ρ ( h ) ) μ \hat{X}_{n+h}=\mu+\frac{\gamma(h)}{\gamma(0)}\left(X_{n}-\mu\right)=\rho(h) X_{n}+(1-\rho(h))\mu X ^ n + h = μ + γ ( 0 ) γ ( h ) ( X n − μ ) = ρ ( h ) X n + ( 1 − ρ ( h ) ) μ
Properties of γ ( h ) \gamma(h) γ ( h )
γ ( 0 ) = 0 \gamma(0)=0 γ ( 0 ) = 0 (variance)
∣ γ ( h ) ∣ ≤ γ ( 0 ) |\gamma(h)| \leq \gamma(0) ∣ γ ( h ) ∣ ≤ γ ( 0 ) (Cauchy-Schwarz inequality: ∣ < u , v > ∣ 2 ≤ ⟨ u , u ⟩ ⋅ ⟨ v ⋅ v ⟩ |<u, v>|^{2} \leq\langle u, u\rangle \cdot\langle v \cdot v\rangle ∣ < u , v > ∣ 2 ≤ ⟨ u , u ⟩ ⋅ ⟨ v ⋅ v ⟩ )
γ ( h ) \gamma(h) γ ( h ) is even: γ ( h ) = γ ( − h ) \gamma(h)=\gamma(-h) γ ( h ) = γ ( − h )
γ ( h ) \gamma(h) γ ( h ) is non-negative definite: ∑ i = 1 n ∑ j = 1 n a i γ ( i − j ) a j ⩾ 0 ∀ n ∈ Z + , a ∈ R n \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \gamma(i-j) a_{j} \geqslant 0 \quad \forall n \in Z^{+}, \quad a \in R^{n} ∑ i = 1 n ∑ j = 1 n a i γ ( i − j ) a j ⩾ 0 ∀ n ∈ Z + , a ∈ R n
Even stronger property: let γ ( h ) \gamma(h) γ ( h ) be a function defined on h ∈ Z h \in Z h ∈ Z , γ ( h ) \gamma(h) γ ( h ) is non-negative and even ⇔ \Leftrightarrow ⇔ It is the auto-covariance function of some stationary sequence
Strictly stationary series
Def . { X t } \{X_t\} { X t } is strictly stationary if ( x 1 , … , x n ) = d ( x 1 + n 1 , … , x n + 1 ) ∀ n and n \left(x_{1}, \ldots, x_{n}\right) \stackrel{d}{=} \left(x_{1}+n_{1}, \ldots, x_{n+1}\right) \quad \forall n \text { and } n ( x 1 , … , x n ) = d ( x 1 + n 1 , … , x n + 1 ) ∀ n and n
Properties
all elements of { X t } \{X_t\} { X t } are identically distributed
( X t , X t + h ) = d ( X 1 , X 1 + h ) (X_t, X_{t+h}) \stackrel{d}{=} (X_1, X_{1+h}) ( X t , X t + h ) = d ( X 1 , X 1 + h )
If E ( X t 2 ) < ∞ E(X_t^2) < \infty E ( X t 2 ) < ∞ , then { X t } \{X_t\} { X t } is weakly stationary
weakly stationary does not imply strictly stationary
IID process is strictly stationary
How to make a stationary sequence?
Let { Z t } \{Z_t\} { Z t } be an iid sequence of random variables.
Let X t = g ( Z t , Z t − 1 , . . . , Z t − q ) X_t=g(Z_t, Z_{t-1}, ..., Z_{t-q}) X t = g ( Z t , Z t − 1 , . . . , Z t − q ) , then X t X_t X t us strictly stationary, because ( z t + h , … , z t + h − q ) = d ( z t , … , z t − q ) \left(z_{t+h}, \ldots, z_{t+h-q}\right) \stackrel{d}{=}\left(z_{t}, \ldots, z_{t-q}\right) ( z t + h , … , z t + h − q ) = d ( z t , … , z t − q )
This sequence { X t } \{X_t\} { X t } is q-dependent, i.e. X t X_t X t and X s X_s X s are independent if ∣ t − s ∣ > q |t-s|>q ∣ t − s ∣ > q
Generalize to weakly stationary, say that { X t } \{X_t\} { X t } is q-correlated if Cov ( X t , X s ) = 0 ∀ ∣ t − s ∣ > q or γ ( h ) = 0 ∀ ∣ h ∣ > q \operatorname{Cov}\left(X_{t}, X_{s}\right)=0 \quad \forall|t-s|>q \text { or } \gamma(h)=0 \quad \forall|h|>q C o v ( X t , X s ) = 0 ∀ ∣ t − s ∣ > q or γ ( h ) = 0 ∀ ∣ h ∣ > q
Every second order weakly stationary process is either a linear process or can be transformed into one by substracting a deterministic component.
Def . { X t } \{X_t\} { X t } is a linear process if X t = ∑ j = − ∞ ∞ ψ j − Z t − j X_{t}=\sum_{j=-\infty}^{\infty} \psi_{j}-Z_{t-j} X t = ∑ j = − ∞ ∞ ψ j − Z t − j where { Z t } ∼ W N ( 0 , σ 2 ) \{Z_t\}\sim WN(0, \sigma^2) { Z t } ∼ W N ( 0 , σ 2 ) and { ψ j } \{\psi_{j}\} { ψ j } is a sequence of where ∑ j = − ∞ ∞ ∣ ψ j ∣ < ∞ \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty ∑ j = − ∞ ∞ ∣ ψ j ∣ < ∞
We can view { X t } \{X_t\} { X t } in terms of Backwards shift operator X t = ψ ( B ) Z t X_t=\psi(B)Z_t X t = ψ ( B ) Z t where ψ ( B ) = ∑ j = − ∞ ∞ ψ j B j \psi(B)=\sum^\infty_{j=-\infty}\psi_jB^j ψ ( B ) = ∑ j = − ∞ ∞ ψ j B j . (Example: Moving average process has this property)
E [ ∣ X t ∣ ] ≤ E [ ∑ j = − ∞ ∞ ∣ Z t − j ψ j ∣ ] ≤ ∑ j = − ∞ ∞ ∣ ψ j ∣ E [ ∣ Z t − j ∣ ] ≤ ∑ j = − ∞ ∞ ∣ ψ j ∣ E [ ∣ Z t − j ∣ 2 ] 1 / 2 E[|X_t|] \leq E[\sum^\infty_{j=-\infty}|Z_{t-j}\psi_j|] \\ \leq \sum^\infty_{j=-\infty}|\psi_j|E[|Z_{t-j}|] \leq \sum^\infty_{j=-\infty}|\psi_j|E[|Z_{t-j}|^2]^{1/2} E [ ∣ X t ∣ ] ≤ E [ ∑ j = − ∞ ∞ ∣ Z t − j ψ j ∣ ] ≤ ∑ j = − ∞ ∞ ∣ ψ j ∣ E [ ∣ Z t − j ∣ ] ≤ ∑ j = − ∞ ∞ ∣ ψ j ∣ E [ ∣ Z t − j ∣ 2 ] 1 / 2
Let { Y t } \{Y_t\} { Y t } be stationary process with mean 0 and auto-covariance function γ Y ( h ) \gamma_Y(h) γ Y ( h ) . If ∑ j = − ∞ ∞ ∣ ψ j ∣ < ∞ \sum^\infty_{j=-\infty}|\psi_j| < \infty ∑ j = − ∞ ∞ ∣ ψ j ∣ < ∞ , then for X t = ∑ j = − ∞ ∞ ψ j Y t − j = ψ ( B ) Y t X_t = \sum^\infty_{j=-\infty}\psi_j Y_{t-j}=\psi(B)Y_t X t = ∑ j = − ∞ ∞ ψ j Y t − j = ψ ( B ) Y t , X t X_t X t is also a stationary sequence with mean 0 and auto-cvovatiance funciton γ X ( h ) = ∑ j = − ∞ ∞ ∑ k = − ∞ ∞ ψ j ψ k γ Y ( h + k − j ) \gamma_X(h)=\sum^\infty_{j=-\infty}\sum^\infty_{k=-\infty} \psi_j \psi_k \gamma_Y(h+k-j) γ X ( h ) = ∑ j = − ∞ ∞ ∑ k = − ∞ ∞ ψ j ψ k γ Y ( h + k − j ) where Y t = ∑ j = − ∞ ∞ ψ j Z t − j Y_t = \sum^\infty_{j=-\infty} \psi_j Z_{t-j} Y t = ∑ j = − ∞ ∞ ψ j Z t − j and { Z t } \{Z_t\} { Z t } is a White Noise process.
Proof . (There is a little difference in the notation of k k k and j j j because of different definition)
γ X ( h ) = E [ X t X t − h ] = E [ ( ∑ k = − ∞ ∞ ψ k y t − k ) ( ∑ j = − ∞ ∞ ψ j y t − j − h ) ] = E [ ∑ j = − ∞ ∞ ∑ k = − ∞ ∞ ψ k ψ j ( y t − k ) ( y t − j − h ) ] = ∑ j = − ∞ ∞ ∑ k = − ∞ ∞ ψ k ψ j γ Y ( h + j − k ) \gamma_X(h) = E[X_t X_{t-h}] \\=E\left[\left(\sum_{k=-\infty}^{\infty} \psi_{k} y_{t-k}\right)\left(\sum_{j=-\infty}^{\infty} \psi_{j} y_{t-j-h}\right)\right] \\=E\left[\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_{k} \psi_{j}\left(y_{t-k}\right)\left(y_{t-j-h}\right)\right] \\=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_{k} \psi_{j} \gamma_{Y}(h+j-k) γ X ( h ) = E [ X t X t − h ] = E [ ( ∑ k = − ∞ ∞ ψ k y t − k ) ( ∑ j = − ∞ ∞ ψ j y t − j − h ) ] = E [ ∑ j = − ∞ ∞ ∑ k = − ∞ ∞ ψ k ψ j ( y t − k ) ( y t − j − h ) ] = ∑ j = − ∞ ∞ ∑ k = − ∞ ∞ ψ k ψ j γ Y ( h + j − k )
If { Y t } \{Y_t\} { Y t } is W N ( 0 , σ 2 ) WN(0, \sigma^2) W N ( 0 , σ 2 ) process, then γ Y ( l ) = 0 , ∀ l ≠ 0 \gamma_Y(l)=0, \forall l\neq 0 γ Y ( l ) = 0 , ∀ l = 0 ⇒ \Rightarrow ⇒ γ X ( h ) = ∑ j = − ∞ ∞ ψ j ψ j − h σ 2 \gamma_X(h)=\sum_{j=-\infty}^{\infty} \psi_j\psi_{j-h} \sigma^{2} γ X ( h ) = ∑ j = − ∞ ∞ ψ j ψ j − h σ 2
Example: AR(1) process
For { X t } \{X_t\} { X t } stationary, let X t = ϕ X t − 1 Z t X_t=\phi X_{t-1}Z_t X t = ϕ X t − 1 Z t where { Z t } ∼ W N ( 0 , σ 2 ) \{Z_t\} \sim WN(0, \sigma^2) { Z t } ∼ W N ( 0 , σ 2 ) . { X t } \{X_t\} { X t } and { Z s } \{Z_s\} { Z s } are uncorrelated for s > t s>t s > t
Define { X t } \{X_t\} { X t } to be the solution to X t − ϕ X t − 1 = Z t X_t - \phi X_{t-1} = Z_t X t − ϕ X t − 1 = Z t
Consider X t = ∑ j = 0 ∞ ϕ j Z t − j X_t=\sum^\infty_{j=0}\phi^jZ_{t-j} X t = ∑ j = 0 ∞ ϕ j Z t − j , we have that { X t } \{X_t\} { X t } is linear with ψ j = ϕ j for j ≥ 0 \psi_j=\phi^j \quad \text{for} j \geq 0 ψ j = ϕ j for j ≥ 0 , and ψ j = 0 for j < 0 \psi_j=0 \quad \text{for} j < 0 ψ j = 0 for j < 0 .
And ∑ j = − ∞ ∞ ∣ ψ j ∣ < ∞ \sum^\infty_{j=-\infty}|\psi_j| < \infty ∑ j = − ∞ ∞ ∣ ψ j ∣ < ∞ iff ∣ ϕ ∣ < 1 |\phi| < 1 ∣ ϕ ∣ < 1
To solve X t − ϕ X t − 1 = Z t X_{t}-\phi X_{t-1}=Z_t X t − ϕ X t − 1 = Z t :
[ ∑ j = 0 ∞ ϕ j Z t − j ] − ϕ [ ∑ j = 0 ∞ ϕ j Z t − 1 − j ] = Z t \left[\sum_{j=0}^{\infty} \phi^{j} Z_{t-j}\right]-\phi\left[\sum_{j=0}^{\infty} \phi^{j} Z_{t-1-j}\right] = Z_{t} [ ∑ j = 0 ∞ ϕ j Z t − j ] − ϕ [ ∑ j = 0 ∞ ϕ j Z t − 1 − j ] = Z t
[ ∑ j = 0 ∞ ϕ j Z t − j ] − [ ∑ j = 0 ∞ ϕ j + 1 Z t − ( j + 1 ) ] = Z t \left[\sum_{j=0}^{\infty} \phi^{j} Z_{t-j}\right]-\left[\sum_{j=0}^{\infty} \phi^{j+1} Z_{t-(j+1)}\right] = Z_{t} [ ∑ j = 0 ∞ ϕ j Z t − j ] − [ ∑ j = 0 ∞ ϕ j + 1 Z t − ( j + 1 ) ] = Z t
[ ∑ j = 0 ∞ ϕ j Z t − j ] − [ ∑ j = 1 ∞ ϕ j Z t − j ] = Z t \left[\sum_{j=0}^{\infty} \phi^{j} Z_{t-j}\right]-\left[\sum_{j=1}^{\infty} \phi^{j} Z_{t-j}\right] = Z_{t} [ ∑ j = 0 ∞ ϕ j Z t − j ] − [ ∑ j = 1 ∞ ϕ j Z t − j ] = Z t
Z t = Z t Z_t=Z_t Z t = Z t
Therefore, { Z t } \{Z_t\} { Z t } is stationary ⇒ \Rightarrow ⇒ { X t } \{X_t\} { X t } is stationary with mean 0 and auto-covariance function γ X ( h ) = ∑ j = 0 ∞ ϕ j ϕ j + h σ 2 = σ 2 ϕ h 1 − ϕ 2 \gamma_X(h)=\sum_{j=0}^{\infty} \phi^j\phi^{j+h} \sigma^{2}=\frac{\sigma^2 \phi^h}{1-\phi^2} γ X ( h ) = ∑ j = 0 ∞ ϕ j ϕ j + h σ 2 = 1 − ϕ 2 σ 2 ϕ h
If ∣ ϕ ∣ > 1 |\phi| > 1 ∣ ϕ ∣ > 1 , then no stationary sequence exists that dependent on the past
Let Φ ( B ) = 1 − ϕ B \Phi(B)=1-\phi B Φ ( B ) = 1 − ϕ B and Π ( B ) = ∑ j = 0 ∞ ψ j B j \Pi(B)=\sum^\infty_{j=0}\psi^jB^j Π ( B ) = ∑ j = 0 ∞ ψ j B j
Then ψ ( B ) = Φ ( B ) Π ( B ) = ( 1 − ϕ B ) ( ∑ j = 0 ∞ ψ j B j ) = ∑ j = 0 ∞ ψ j B j − ∑ j = 0 ∞ ψ j + 1 B j + 1 = ψ 0 B 0 = 1 \psi(B)=\Phi(B)\Pi(B)\\=(1-\phi B)(\sum^\infty_{j=0}\psi^jB^j)\\=\sum^\infty_{j=0}\psi^jB^j - \sum^\infty_{j=0}\psi^{j+1}B^{j+1}\\=\psi^0B^0=1 ψ ( B ) = Φ ( B ) Π ( B ) = ( 1 − ϕ B ) ( ∑ j = 0 ∞ ψ j B j ) = ∑ j = 0 ∞ ψ j B j − ∑ j = 0 ∞ ψ j + 1 B j + 1 = ψ 0 B 0 = 1
X t − ϕ X t − 1 = ( 1 − ϕ B ) X t = Φ ( B ) X t X_t-\phi X_{t-1} = (1-\phi B)X_t=\Phi(B)X_t X t − ϕ X t − 1 = ( 1 − ϕ B ) X t = Φ ( B ) X t
Π ( B ) Φ ( B ) X t = Π ( B ) Z t \Pi(B)\Phi(B)X_t=\Pi(B)Z_t Π ( B ) Φ ( B ) X t = Π ( B ) Z t
ψ ( B ) X t = Π ( B ) Z t \psi(B)X_t=\Pi(B)Z_t ψ ( B ) X t = Π ( B ) Z t
X t = ∑ j = 0 ∞ ϕ j B j Z t = ∑ j = 0 ∞ ϕ j Z t − j X_t = \sum^\infty_{j=0}\phi^jB_jZ_t = \sum^\infty_{j=0}\phi^jZ_{t-j} X t = ∑ j = 0 ∞ ϕ j B j Z t = ∑ j = 0 ∞ ϕ j Z t − j